Python实现爬取亚马逊数据并打印出Excel文件操作示例

系统 1434 0

本文实例讲述了Python实现爬取亚马逊数据并打印出Excel文件操作。分享给大家供大家参考,具体如下:

python大神们别喷,代码写的很粗糙,主要是完成功能,能够借鉴就看下吧,我是学java的,毕竟不是学python的,自己自学看了一点点python,望谅解。

            
#!/usr/bin/env python3
# encoding=UTF-8
import sys
import re
import urllib.request
import json
import time
import zlib
from html import unescape
import threading
import os
import xlwt
import math
import requests
#例如这里设置递归为一百万
sys.setrecursionlimit(1000000000)
##获取所有列别
def getProUrl():
  urlList = []
  headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36"}
  session = requests.Session()
  furl="https://www.amazon.cn/?tag=baidu250-23&hvadid={creative}&ref=pz_ic_22fvxh4dwf_e&page="
  for i in range(0,1):
    html=""
    html = session.post(furl+str(i),headers = headers)
    html.encoding = 'utf-8'
    s=html.text.encode('gb2312','ignore').decode('gb2312')
    url=r'
            
  • ' reg=re.compile(url,re.M) name='"category" : "' + '(.*?)' + '"' reg1=re.compile(name,re.S) urlList = reg1.findall(html.text) return urlList ##根据类别获取数据链接 def getUrlData(ci): url="https://www.amazon.cn/s/ref=nb_sb_noss_2?__mk_zh_CN=%E4%BA%9A%E9%A9%AC%E9%80%8A%E7%BD%91%E7%AB%99&url=search-alias%3Daps&field-keywords="+ci+"&page=1&sort=review-rank" return url ##定时任务,等待1秒在进行 def fun_timer(): time.sleep(3) ##根据链接进行查询每个类别的网页内容 def getProData(allUrlList): webContentHtmlList = [] headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36"} for ci in allUrlList: session = requests.Session() fun_timer() html = session.get(getUrlData(ci),headers = headers) # 设置编码 html.encoding = 'utf-8' html.text.encode('gb2312', 'ignore').decode('gb2312') gxg = r'
  • ' reg = re.compile(gxg, re.M) items = reg.findall(html.text) print(html.text) webContentHtmlList.append(html.text) return webContentHtmlList ##根据网页内容过滤需要的属性和值 def getProValue(): list1 = [] * 5 list2 = [] * 5 list3 = [] * 5 list4 = [] * 5 list5 = [] * 5 list6 = [] * 5 list7 = [] * 5 list8 = [] * 5 urlList = getProUrl(); urlList.remove('全部分类') urlList.remove('Prime会员优先购') index = 0 for head in urlList: if index >= 0 and index < 5: list1.append(head) index = index + 1 if index >= 5 and index < 10: list2.append(head) index = index + 1 if index >= 10 and index < 15: list3.append(head) index = index + 1 if index >= 15 and index < 20: list4.append(head) index = index + 1 if index >= 20 and index < 25: list5.append(head) index = index + 1 if index >= 25 and index < 30: list6.append(head) index = index + 1 if index >= 30 and index < 35: list7.append(head) index = index + 1 if index >= 35 and index < 40: list8.append(head) index = index + 1 webContentHtmlList1 = [] webContentHtmlList1 = getProData(list1) webContentHtmlList2 = [] webContentHtmlList2 = getProData(list2) webContentHtmlList3 = [] webContentHtmlList3 = getProData(list3) webContentHtmlList4 = [] webContentHtmlList4 = getProData(list4) webContentHtmlList5 = [] webContentHtmlList5 = getProData(list5) webContentHtmlList6 = [] webContentHtmlList6 = getProData(list6) webContentHtmlList7 = [] webContentHtmlList7 = getProData(list7) webContentHtmlList8 = [] webContentHtmlList8 = getProData(list8) ##存储所有数据的集合 dataTwoAllList1 = [] print("开始检索数据,检索数据中..........") ##网页内容1 for html in webContentHtmlList1: for i in range(15): dataList = [] dataList.append(unescape(getProCategory(html,i))) dataList.append(unescape(getProTitle(html,i))) dataList.append(getProPrice(html,i)) dataList.append(getSellerCount(html,i)) dataList.append(getProStar(html,i)) dataList.append(getProCommentCount(html,i)) print(dataList) dataTwoAllList1.append(dataList) ##网页内容2 for html in webContentHtmlList2: for i in range(15): dataList = [] dataList.append(unescape(getProCategory(html,i))) dataList.append(unescape(getProTitle(html,i))) dataList.append(getProPrice(html,i)) dataList.append(getSellerCount(html,i)) dataList.append(getProStar(html,i)) dataList.append(getProCommentCount(html,i)) print(dataList) dataTwoAllList1.append(dataList) ##网页内容3 for html in webContentHtmlList3: for i in range(15): dataList = [] dataList.append(unescape(getProCategory(html,i))) dataList.append(unescape(getProTitle(html,i))) dataList.append(getProPrice(html,i)) dataList.append(getSellerCount(html,i)) dataList.append(getProStar(html,i)) dataList.append(getProCommentCount(html,i)) print(dataList) dataTwoAllList1.append(dataList) ##网页内容4 for html in webContentHtmlList4: for i in range(15): dataList = [] dataList.append(unescape(getProCategory(html,i))) dataList.append(unescape(getProTitle(html,i))) dataList.append(getProPrice(html,i)) dataList.append(getSellerCount(html,i)) dataList.append(getProStar(html,i)) dataList.append(getProCommentCount(html,i)) print(dataList) dataTwoAllList1.append(dataList) ##网页内容5 for html in webContentHtmlList5: for i in range(15): dataList = [] dataList.append(unescape(getProCategory(html,i))) dataList.append(unescape(getProTitle(html,i))) dataList.append(getProPrice(html,i)) dataList.append(getSellerCount(html,i)) dataList.append(getProStar(html,i)) dataList.append(getProCommentCount(html,i)) print(dataList) dataTwoAllList1.append(dataList) ##网页内容6 for html in webContentHtmlList6: for i in range(15): dataList = [] dataList.append(unescape(getProCategory(html,i))) dataList.append(unescape(getProTitle(html,i))) dataList.append(getProPrice(html,i)) dataList.append(getSellerCount(html,i)) dataList.append(getProStar(html,i)) dataList.append(getProCommentCount(html,i)) print(dataList) dataTwoAllList1.append(dataList) ##网页内容7 for html in webContentHtmlList7: for i in range(15): dataList = [] dataList.append(unescape(getProCategory(html,i))) dataList.append(unescape(getProTitle(html,i))) dataList.append(getProPrice(html,i)) dataList.append(getSellerCount(html,i)) dataList.append(getProStar(html,i)) dataList.append(getProCommentCount(html,i)) print(dataList) dataTwoAllList1.append(dataList) ##网页内容8 for html in webContentHtmlList8: for i in range(15): dataList = [] dataList.append(unescape(getProCategory(html,i))) dataList.append(unescape(getProTitle(html,i))) dataList.append(getProPrice(html,i)) dataList.append(getSellerCount(html,i)) dataList.append(getProStar(html,i)) dataList.append(getProCommentCount(html,i)) print(dataList) dataTwoAllList1.append(dataList) print("检索数据完成!!!!") print("开始保存并打印Excel文档数据!!!!") ##保存文档 createTable(time.strftime("%Y%m%d") + '亚马逊销量数据统计.xls', dataTwoAllList1) ##抽取类别 def getProCategory(html,i): i = 0; name = ' ' + '(.*?)' + ' ' reg=re.compile(name,re.S) items = reg.findall(html) if len(items)==0: return "" else: if i ' + '(.*?)' + '' reg=re.compile(name,re.S) items = reg.findall(html) if len(items)==0: return "¥0" else: return items[0] ##抽取卖家统计 def getSellerCount(html,i): html = getHtmlById(html,i) name = ' ' + '(.*?)' + ' ' reg=re.compile(name,re.S) items = reg.findall(html) if len(items)==0: return "(0 卖家)" else: return checkSellerCount(items,0) ##检查卖家统计 def checkSellerCount(items,i): result = items[i].find('卖家') >= 0 if result: if len(items[i])<=9: return items[i] else: return '(0 卖家)' else: if i + 1 < len(items): i = i + 1 result = items[i].find('卖家') >= 0 if result: if len(items[i]) <= 9: return items[i] else: return '(0 卖家)' if i + 1 < len(items[i]): i = i + 1 result = items[i].find('卖家') >= 0 if result: if len(items[i]) <= 9: return items[i] else: return '(0 卖家)' else: return '(0 卖家)' else: return '(0 卖家)' else: return '(0 卖家)' else: return '(0 卖家)' return '(0 卖家)' ##抽取星级 def getProStar(html,i): html = getHtmlById(html,i) name = ' ' + '(.*?)' + ' ' reg=re.compile(name,re.S) items = reg.findall(html) if len(items)==0: return "平均 0 星" else: return checkProStar(items,0) ##检查星级 def checkProStar(items,i): result = items[i].find('星') >= 0 if result: return items[i] else: if i + 1 < len(items): i = i + 1 result = items[i].find('星') >= 0 if result: return items[i] else: return '平均 0 星' else: return '平均 0 星' return '平均 0 星' ##抽取商品评论数量 销量 ## 56 def getProCommentCount(html,i): name = ' ' reg=re.compile(name,re.S) items = reg.findall(html) if len(items)==0: return "0" else: if i ") else: return "0" ##根据id取出html里面的内容 def get_id_tag(content, id_name): id_name = id_name.strip() patt_id_tag = """<[^>]*id=['"]?""" + id_name + """['" ][^>]*>""" id_tag = re.findall(patt_id_tag, content, re.DOTALL|re.IGNORECASE) if id_tag: id_tag = id_tag[0] else: id_tag="" return id_tag ##缩小范围 定位值 def getHtmlById(html,i): start = get_id_tag(html,"result_"+str(i)) i=i+1 end = get_id_tag(html, "result_" + str(i)) name = start + '.*?'+end reg = re.compile(name, re.S) html = html.strip() items = reg.findall(html) if len(items) == 0: return "" else: return items[0] ##生成word文档 def createTable(tableName,dataTwoAllList): flag = 1 results = [] results.append("类别,标题,价格,卖家统计,星级,评论数") columnName = results[0].split(',') # 创建一个excel工作簿,编码utf-8,表格中支持中文 wb = xlwt.Workbook(encoding='utf-8') # 创建一个sheet sheet = wb.add_sheet('sheet 1') # 获取行数 rows = math.ceil(len(dataTwoAllList)) # 获取列数 columns = len(columnName) # 创建格式style style = xlwt.XFStyle() # 创建font,设置字体 font = xlwt.Font() # 字体格式 font.name = 'Times New Roman' # 将字体font,应用到格式style style.font = font # 创建alignment,居中 alignment = xlwt.Alignment() # 居中 alignment.horz = xlwt.Alignment.HORZ_CENTER # 应用到格式style style.alignment = alignment style1 = xlwt.XFStyle() font1 = xlwt.Font() font1.name = 'Times New Roman' # 字体颜色(绿色) # font1.colour_index = 3 # 字体加粗 font1.bold = True style1.font = font1 style1.alignment = alignment for i in range(columns): # 设置列的宽度 sheet.col(i).width = 5000 # 插入列名 for i in range(columns): sheet.write(0, i, columnName[i], style1) for i in range(1,rows): for j in range(0,columns): sheet.write(i, j, dataTwoAllList[i-1][j], style) wb.save(tableName) ##入口开始 input("按回车键开始导出..........") fun_timer() print("三秒后开始抓取数据.......,请等待!") getProValue(); print("数据导出成功!请注意查看!") print("数据文档《亚马逊销量数据统计.xls》已经存于C盘下面的C:\Windows\SysWOW64的该路径下面!!!!") input()
  • 结果数据:

    Python实现爬取亚马逊数据并打印出Excel文件操作示例_第1张图片

    打包成exe文件,直接可以点击运行:打包过程我就不一一说了,都是一些命令操作:

    要安装pyinstaller,打成exe的操作命令:--inco是图标,路径和项目当前路径一样

    途中遇到很多问题,都一一解决了,乱码,ip限制,打包后引入模块找不到,递归最大次数,过滤的一些问题

    pyinstaller -F -c --icon=my.ico crawling.py     这是打包命令

    Python实现爬取亚马逊数据并打印出Excel文件操作示例_第2张图片

    效果图:

    Python实现爬取亚马逊数据并打印出Excel文件操作示例_第3张图片

    更多关于Python相关内容可查看本站专题:《Python Socket编程技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

    希望本文所述对大家Python程序设计有所帮助。


    更多文章、技术交流、商务合作、联系博主

    微信扫码或搜索:z360901061

    微信扫一扫加我为好友

    QQ号联系: 360901061

    您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

    【本文对您有帮助就好】

    您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

    发表我的评论
    最新评论 总共0条评论