(1)枚举默认为unsigned int类型,我们可以手动为枚举指定类型,如:
enum
Attr :
char
{
ATTR_LV =
120
,
};
(2)我们可以使用泰勒展开式快速计算两点间距离:
int
fastDistance2D(
int
_nX1,
int
_nY1,
int
_nX2,
int
_nY2 )
{
//
this function computes the distance from _nX1, _nY1 to _nX2, _nY2 with 3.5% error
//
first compute the absolute value of (_nX2 - _nX1), (_nY2 - _nY1)
int
x = abs( _nX2 - _nX1 );
int
y = abs( _nY2 - _nY1 );
//
compute the minimum of x,y
int
nMin = min( x, y );
//
return the distance
return
( x + y - (nMin >>
1
) - (nMin >>
2
) + (nMin >>
4
) );
}
float
fastDistance3D(
float
_fX1,
float
_fY1,
float
_fZ1,
float
_fX2,
float
_fY2,
float
_fZ2 )
{
//
this function computes the distance from the _fX1, _fY1, _fZ1 to _fX2, _fY2, _fZ2
//
make sure values are all positive
int
x = static_cast<
int
>( fabs(_fX2 - _fX1) *
1024
);
int
y = static_cast<
int
>( fabs(_fY2 - _fY1) *
1024
);
int
z = static_cast<
int
>( fabs(_fZ2 - _fZ1) *
1024
);
//
sort values
int
nTemp =
0
;
if
( y < x )
{
nTemp = x;
x = y;
y = nTemp;
}
if
( z < y )
{
nTemp = y;
y = z;
z = nTemp;
}
if
( y < x )
{
nTemp = x;
x = y;
y = nTemp;
}
////////////////////////////////////////////////////////////////////////
//
//
compute distance with 8% error
int
dist = ( z +
11
* (y >>
5
) + (x >>
2
) );
return
( static_cast<
float
>(dist >>
10
) );
}
(3)sinx的泰勒级数表示如下:
cosx的泰勒级数表示如下:
理想情况下,这些级数将是无限延伸的以达到最大的精确性,但是我们需要根据特定情况使用有限项来计算精确的结果,使用1到4项的sinx泰勒级数如下:
当x的值离原点越远,我们就需要越多的项来计算精确的结果。一般来说,4项对于我们来说足够了,因为sinx是以2pi为周期的函数,因此我们可以把任意的x的值规范到-pi ~ pi之间再进行计算。
(4)可以用柱坐标或球坐标将点从极坐标系转换到笛卡尔坐标系中,如图:
(5)在着色器中计算顶点颜色时,虽然着色器中所有的值都是浮点数,但在顶点颜色离开着色器时,它会被裁剪到范围0~1,并且受制于顶点颜色的格式。举例来说,如果顶点颜色的格式是32位的,那么颜色的每个分量只能保存8位即256种不同的值。这也就是说,在0~1之间只存在256种不同的值,所以,当颜色的变换小于1/256时,将会出现偏差,如图:
有许多办法可以解决这个问题,例如将数据分别存在多个分量中,最终再重新组合。或者将数据存入纹理坐标中,然后从一个预先定义的纹理中取出最终的数据等等。
(6)当我们使用非均匀的缩放矩阵变换物体时,必须注意物体法线的变换问题,如图:
其中(a)表示原始的法线,(b)表示将非均匀的缩放矩阵变换应用到法线上,此时我们发现法线不再垂直于表面,(c)表示应用正确的变换矩阵到法线上,法线变换后仍绕垂直于表面。
这个正确的变换矩阵就是应用于物体的变换矩阵的逆转置矩阵。
现假设A矩阵是应用到物体的世界变换矩阵,u向量代表顶点切线,n向量代表顶点法线,我们知道有:
然后我们把点积写成向量乘矩阵的形式:
之后插入单位矩阵:
进行适当的组合:
把后面的项进行转置操作:
再把向量乘矩阵写成点积形式:
最后我们得到了A的逆转置矩阵可以正确的变换法线。
(7)相对于2D纹理坐标,在立方体映射中我们使用一个从立方体原点发射的3D向量作为纹理坐标,立方体的某一面与该3D向量的交点即是我们所要采集的纹理元素。
现假设该3D向量为v(-3, -1, 2),由于x坐标是最大的值(绝对值大小),所以该3D向量肯定与立方体的x轴负方向的面相交,同理,如果v(-1, 4, 2),那么肯定与立方体的y轴正方向的面相交。现在,我们将该3D向量的另外2个分量除以最大的那个分量的绝对值,即(-1, 2) / |-3| = (-1/3, 2/3),这样将产生[-1, 1]之间的坐标值,为了求得正确的纹理坐标值,我们再将结果规范化到[0, 1]之间,即1/2(-1/3 + 1, 2/3 + 1) = (0.33, 0.83),这样,就求得了用于从相交面采集纹理元素的2D纹理坐标。
(8)平面方程为Ax + By + Cz = D,其中,A,B,C表示平面法线的3个分量,D表示平面到原点的有向距离。假设我们现在有P1,P2,P3点,要求这3个点所在的平面方程,我们可以先求两两点之间的向量,如图:
然后,我们只需要随意取V1,V2,V3向量中的2个进行叉积,我们就可以得到平面的法线,这里要注意叉积的顺序问题。
接着,我们把求得的法线的3个分量分别代入A,B,C,然后,随意取P1,P2,P3中的一点代入平面方程,就可以求得D。基本过程如下:

